After several years (really!) of development, I’m pleased to announce that rankit has been upgraded to v0.3. The version of previous major release is v0.1, which was made in 2016. So what has changed during these three years?

At the time when rankit v0.1 was developed, it was aimed to implement all fascinating algorithms mentioned in a beautiful ranking book and provide an alternative ranking solution to Bangumi. The programming interface designed at that time is far from practical. As I was looking into more ranking algorithms, the more I felt that rankit should include some popular ranking algorithms that are based on time series. One of them is Elo ranking, which has a simple implementation in rankit v0.2. But the usage scenario is limited: updating ranking is tedious and its interfaces are not compatible with existing ranking algorithms.

In v0.3, following updates are made to address those problems mentioned above:

  1. Split rankers to “Unsupervised ranker” and “Time series ranker”. Each of those two rankers have their own interface, and they both consume the Table object to keep records.
  2. Introduced Elo ranker, Glicko 2 ranker and TrueSkill ranker (only paired competition record is supported)
  3. Updated interface to make it more user-friendly. For unsupervised ranker, only rank method is provided since it needs no update. For time series ranker, user should provide one use update to accumulate new record data and one can retrieve latest leader board by invoking leaderboard after each update.

The documentation of rankit has also been updated.

One side product of rankit is the “Scientific animation ranking for Bangumi”. For a long time, the ranking is not updated and it is gradually forgotten. I gave it a refresh last year and it is now having a completely new look with faster response and simple search functionality. More importantly, the ranking will be updated monthly. I would invite you all to have a try it here:

The latest scientific animation ranking also involves minor algorithm changes. It is often witnessed that at certain time, users with peculiar intention would pour into Bangumi to rate one specific animation with certain high or low score. This impacted the proper order of rating. In previous version of scientific ranking, one can neglect those users who rate one anime and leave permanently, but could not handle those users who rate multiple animations. I adjusted the scores user rated overall and made several normalization according to the distribution of users’ rating, and all versions of normalized scores are fed into rankit to calculate latest rank. The final rank is still merged using Borda count.

But could this be solved from another perspective? One thing I have been thinking about is how to involve time series ranking into current ranking scheme. Ideally, time series ranking should act to combat ranking manipulation behavior in a way other than pairwise ranking. As I was reading about TrueSkill ranking, their brilliant idea to inference ranking using linear chain graph stroke me. Actually, TrueSkill is a generative graph model that organized in a order same as competition score. Another issue that need to resolve is to help users adjust historical ratings automatically: a user would rate an animation with wider range before, but his or her rating criteria may change with the evolvement of time. How to propagate recent rating criteria to historical ratings? All these should be supported in the next version of rankit. That is, to enable ranking for multiple players in a match, and power to propagate recent competition result to historical data.