Game Theory Note - week 2
This week’s Game Theory is dedicated to Mixed-Strategy Nash Equilibrium.
Mixed strategy, different from pure strategy, means that players can choose an action according to a specific probability distribution (among all possible actions). The following concepts and definitions all derives from this idea:
- Strategy $s_i$
- any probability distribution over the actions $A_i$ for agent i.
- Pure strategy
- only one action is played with positive probability.
- Mixed strategy
- more than one action is played with positive probability.
- Support (of mixed strategy)
- all the actions
We denote $s_i \in S_i$ as $S_i$ is the set of all strategies for user i. All strategies $S = S_1 \times S_2 \times \ldots \times S_n$
Expected Utility is defined as follows:
In the equations above, a means a possible action profile from A. $a_j$ does not mean each of the action but the player j’s corresponding action in the corresponding profile.
Best response
$s_{i}^{} \in BR(s_{-i}) iff \forall s_i \in S_i u_{i}(s_{i}^{}, s_{-i}) \ge u_{i}(s_i, s_{-i})$
Nash Equilibrium
$s=<s_1, s_2,=”” \ldots,=”” s_n=””> \mbox( is a Nash Equilibrium iff }\forall i, s_i \in BR(s_{-i})$</s_1,>
- Theorem
- Every finite game has a Nash Equilibrium. (While comparing to pure strategy games!)
It is often very hard to compute the Nash Equilibrium of a game, but in simple cases, in which we know the support, we can get the Nash Equilibrium by being acknowledged that a player will act indifferently facing a mixed strategy.